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Abstract 
Mercury is classified as a persistent bioaccumulative toxin.  Sulfate-reducing bacteria, largely 
present in wetlands with forested landscapes, transform into its more reactive form, 
methylmercury (MeHg).  Wet and dry deposition of Hg show varied spatial patterns of distribution 
and did not always positively correlate with each other.  Dry deposition of Hg in the leaf litter 
generally positively correlated with wet deposition.  Assuming that a positive association existed, 
we sought to use a measure of biomass to predict Hg concentration, as a form of wet deposition.  
We used ordinary least squares regression, with AICc model selection, to predict mean annual Hg 
concentration.  Drainage basins were delineated for 40 USGS streamflow gages and used to 
calculate median and mean leaf area index (LAI) (for dates May to Sept, 2011), percent land cover, 
and percent impervious surface for the Great Lakes region.  The five best models showed that only 
LAI from mid June (10 June) or late September (30 Sept.), along with watershed area (HUC-10) 
predicted just under half the variability in Hg concentration (R2=0.44 - 0.49).  Results showed a 
negative association between Hg concentration and LAI.  The negative relationship could suggest 
local spatiotemporal variation of both Hg concentration and biomass.  Despite wide confidence 
intervals of prediction, results showed higher Hg concentrations near urban areas, rising from 
north to south.  The level of forest harvesting in these areas could play a role in increasing soil 
runoff and increased Hg levels as well.  This study stresses how land use change (e.g., in harvested 
forests or urban areas) may influence potential runoff of numerous contaminants, including Hg, 
into nearby watersheds.  
 

 
1.0 Introduction 
 
1.1.  Effects of Mercury on Great Lakes Ecosystems and Organisms   
 
The Great Lakes Region provides 84 percent of North America’s surface water and 21 percent of the 
world’s fresh water (EPA 1995).  With over 10,000 miles of shoreline that span over 201,000 mi2 of 
drainage areas (EPA 1995), these vast freshwater natural resources provide recreation, 
employment, food, and water to more than 35 million people (Evers et al. 2011b).  Given the reach 
and influence of the Great Lakes, water quality is critical to ensure a healthy ecosystem.  Monitoring 
the water quality is important for ensuring contaminant levels do not exceed certain standards. 
 
The threat of mercury (Hg) continues to affect the health of the Great Lakes Region.  Although a 
naturally occurring element on earth, in large concentrations, Hg can pose serious problems in the 
environment and to human health.  Human activities are estimated to release up to two-thirds of Hg 
globally (Mason et al., 2005; UNEP Chemicals Branch, 2008).  High amounts of Hg were used in 
industry for its diverse properties, but its use declined precipitously by the mid 1990’s after 
widespread elimination of Hg from pesticides (EPA, 1995).  Mercury is also released into the 
atmosphere when it is burned.  In the US, anthropogenic sources from coal-burning power plants 
account more than 50 percent of US Hg emissions (EPA, 2005).  
 
Since 2007, five states have issued consumption advisories from high levels of mercury (Hg) in 
common freshwater fish (Evers et al., 2011b).  This is classified as a persistent bioaccumulative 
toxin by the Environmental Protection Agency (EPA) (EPA, 2001).  Overconsumption of fish with 
high levels of methylmercury (MeHg) can have adverse and unknown effects on the brain and 
nervous system such as seizures or mental retardation (Silbernagel, 2011).  There are subtle 
neurological and reproductive effects in humans and wildlife caused by consuming Hg-
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contaminated fish (Gilbertson and Carpenter, 2004).  After mercury has traveled to wetland 
systems, sulfate-reducing bacteria transform elemental Hg to MeHg (SØrensen, et al., 2009).  As 
larger predators consume Hg-laden prey, higher levels of Hg bioaccumulate in organ tissue of 
animals such as common loons or walleye (Evers et al., 2011b).  In turn, the level of Hg consumed 
by larger predators biomagnifies up through the food chain.  Piscivorous fish such as walleye and 
northern pike (favorites among anglers), have increased MeHg concentrations (Evers et al. 2011a).  
This amplifies the risk to humans consuming such fish. 
 
Initial regulation, beginning around the 1970’s, addressed Hg deposition in the Great Lakes from 
large industrial sources such as paper and pulp mills (Evers et al., 2011b).  During this period, 
under the Boundary Waters Treaty Act of 1909, the International Joint Commission was established 
to assist the US. in implementing the 1978 Great Lakes Water Quality Agreement (EPA, 1989).  This 
Commission made mercury a priority concern for several reasons: the availability of emerging 
predictive Hg cycling models, the EPA’s decision in 2000 to decrease the reference dose of Hg to 0.1 
µg/kg body weight/day and the increasing number of fish consumption advisories across the Great 
Lakes (Gilbertson & Carpenter, 2004).  Despite this priority designation, Hg remains a major threat 
to humans and Great Lakes ecosystems 30 years later.  
 

1.2. Distribution of Mercury  
 
The majority of Hg deposition is atmospheric, making it difficult to where Hg originated.  For 
example, when Hg is emitted as gas and particles, it can travel up to 10 km from the original 
stationary source (Driscoll et al., 2007).   Atmospheric Hg is transported from point sources to the 
environment as wet and dry deposition. Wet Hg is deposited to ecosystems through precipitation, 
whereas dry deposition is the process of Hg transfer from atmosphere to the terrestrial surfaces 
(Risch et al., 2011). 
 
Watersheds that have received elevated levels of Hg are considered mercury-sensitive watersheds.  
These watersheds are densely forested with numerous wetlands (Evers et al., 2011a).   In these 
areas, litterfall (i.e., biomass) may become another major source of Hg through dry deposition in 
dense forest stands, such as those in the northern reaches of the Great Lakes states.  A study across 
the eastern U.S. showed that even in forested landscapes with moderate wet Hg deposition, high 
levels of dry deposition can occur (Risch et al., 2011).  The spatial pattern indicated an increase in 
litterfall Hg from Georgia northward through Wisconsin and New York.  Another study of fish Hg 
concentration in the Great Lakes revealed a similar trend of increasing Hg levels south to north, 
with higher levels in the eastern compared to western Great Lakes region (Monson et al., 2011).   
 
These studies suggest that not considering both the dry and wet forms of Hg depositions fails to 
accurately portray the distribution of Hg across the landscape.  Although higher dry deposition 
correlates with higher point-source mercury deposition points, regional-scale studies also suggest 
that few patterns occur in atmospheric Hg wet deposition (Engle et al., 2010).  Nevertheless, 
numerous studies attempt to estimate total Hg through landscape-scale and catchment-scale 
models. 
 
Regional studies provide the spatial patterns to understand local Hg cycling (Driscoll et al., 2007; 
Engle et al., 2010; Gilbertson & Carpenter, 2004).  Local studies provide the more detail review of 
additional variables that affect Hg cycling (Hurly et al., 1995; Babiarz et al., 2012; Zhang et al., 
2012).  Empirical models of Hg cycling provide predictions of total Hg or MeHg at the basin-scale 
catchment (Futter et al., 2012; Brakebill et al., 2011).   However, more research that provides 
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ecosystem-scale analysis of total Hg distribution (Lindberg et al., 2007; Mason et al., 2005) is 
needed, especially in evaluating the empirical models.   
 
Similar broad-scale studies of landscape factors affecting water quality have provided insight into 
ecosystem processes.  Forest cover such as the particular tree species, canopy density, and leaf area 
influence the amount of precipitation partitioned in remaining in the canopy leaves as precipitation 
storage and net precipitation reaching the forest floor (Winkler et al., 2009).  We might expect 
increased Hg in watersheds in areas with more net precipitation due to storm events or harvesting.  
Extending this to urban environments with higher impervious surface or fewer forests, more net 
precipitation would reach nearby watersheds.  Additionally, studies have shown that forest 
harvesting can increase snow accumulation and eventual elevated snowmelt (and wet deposition) 
of contaminants streams (Murray & Buttle, 2003; Winkler et al., 2005). 
 
A review of the effects of forest removal on streamflow emphasized the fact that in areas with 
reduced forest cover (i.e., biomass), streamflow increased (Buttle & Murray, 2011).  Organic soils 
such as those in boreal forests accumulate more Hg (Dersrosiers et al., 2006).  Following forest 
cover removal, favorable environmental conditions for sulfate-reducing bacteria (e.g., increases in 
soil temperature, water tables, and the availability of carbon) amplify Hg methylation (SØrensen, et 
al., 2009).   This is the basis of my research, with the research objective to quantify the relationship 
between upstream biomass and downstream hg accumulation.   
 
To accurately estimate the accumulation of basin-wide Hg, long-term monitoring of stream mercury 
is needed. Without these data however, known relationships between biomass and Hg can serve as 
indicators of Hg across a larger landscape.  Concentrations of Hg have increased in lakes and 
streams with higher abundance of forests and wetlands farther north (Evers et al., 2011a; Engle et 
al., 2010).  I sought to add to the current literature investigating the relationship between 
watershed-measured Hg concentration and remotely-sensed LAI.   
 
 

1.3. Research Objective 
 
Given this previous positive relationship between forest and wetland landscapes with Hg levels, 
this study’s research objective was to test whether biomass would show a positive relationship 
with Hg concentrations measured at U.S. Geological Survey (USGS) gauge stations.  To meet this 
objective, I collaborated with researchers at the USGS Water Science Center in Middleton, WI to 
develop research questions and a methodology to predict Hg concentration. Upstream biomass was 
measured as leaf area index (LAI) while downstream Hg accumulation was measured from USGS 
streamflow gages. 
 
As an important measure of forest canopy, LAI provides the three-dimensional aerial coverage of 
leaves measured as area per unit ground-surface area (Jenson, 2006).  Field collection of biomass is 
time intensive, which involves estimating leaf area from destructive leaf sampling (Jonckheere et 
al., 2004).  The samples are dried and weighed to determine the number of aerial units covered by 
leaves in a horizontal plane.  Less time-intense indirect leaf area estimation is based on the spectral 
response of active radiation from seven spectral bands collected from satellite images.  The 
bidirectional reflectance distribution function (BRDF) is calculated from solar azimuth and zenith 
angles recorded by satellites.  This BRDF describes the bidirectional characteristics of the sun’s 
irradiance and the angle of the remote sensor viewing the feature of interest (Jenson, 2006).   A 
widely-used and well-documented LAI produced is produced from the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) satellite imagery.   MODIS LAI product is created using 
spectral imagery retrieved By accounting for BRDF angles, a measure of the three-dimensional 
forest canopy structure (i.e., LAI) is created from compression algorithm that reduces redundant 
information to one spectral response, interpreted as LAI (Myneni et al., 2003).  The reader is 
referred to the MODIS user guide on LAI for more background on the LAI algorithm (Myneni et al., 
2003; Knyazikhin et al., 1999).    
 
 
2.0 Methods  
 
This study’s aim was to develop inferential models for predicting future Hg Concentration for the 
entire Great Lakes Basin.  A unique spatial analysis at the time, Hurley (1995), took advantage of 
previously-established relationships between land cover and stream water quality.  Models that 
make use of large datasets to predict regional-scale nutrient estimates (e.g., SPatially Referenced 
Regressions on Watershed Attributes “SPARROW” [Schwartz et al., 2006] and Soil and Water 
Assessment Tool, “SWAT” [Neitsch et al., 2011]).  This study makes use of only the Great Lakes 
region to investigate relationships of Hg concentration and landscape variables.  Specifically, this 
method involved identifying empirical relationships between several landscape-scale variables and 
Hg Concentration in the Great Lakes drainage basins with the additional parameter of remotely-
sensed LAI.    
 
 
2.1. Study Area 
 
The study area was centered on the Great Lakes Region Basin, as defined by the USGS National 
Hydrography Dataset (NHD), Hyrdologic Unit Code 04 (HUC-04), which borders the United States of 
Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Pennsylvania, New York, Vermont, New 
Hampshire, and Maine and Canada’s provinces of Ontario and Quebec.  The extent of the Great 
Lakes Region is 49.022615oN, -93.213865oW and 40.394681oN, -70.238450oW (North American 
Datum 1983). 
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Figure 1. Study area map with streamgages used for model calibration (black points) and nine 
prediction streamgages (red diamonds).   
 
2.2. Variables for Regression Model 
 
To build upon this initial landscape-scale research, USGS collaborators and I analyzed data 
recorded daily over the full 2011 hydrologic year at 53 USGS streamflow-gaging stations (hereafter 
“streamgage”) located in five states bordering the Great Lakes (Figure 1,2).  Using a set of candidate 
log-linear multilinear regression models, I predicted Hg concentration from the algebraic 
combination of these several relevant predictor variables.  I evaluated the significance influence of 
total flow, basin drainage area, watershed area, LAI, and land cover for predicting Hg concentration.  
Except for watershed area, I measured each predictor variable at the scale of the streamgage and 
Drainage Basin.  I listed all variables in Table 1 deemed important in understanding what influences 
Hg Concentration spatially.  The definitions and source are listed in Table X as well.  
 
2.2.1. Response Variable: Mercury Concentration 
For the response variable, I estimated the mean daily Hg concentration for each streamgage for 
2011.  Streamgages recorded hourly water quality and streamflow values.  I decided to use this 
mean value because it provided an overall value and reduced extremes of flow and Hg 
Concentration.  Fifty-three streamgages were available that had Hg concentration values.  Two 
streamgages only had mean Hg Concentrations for 61 and 92 days of the year.  Because of the 
relatively large sample size, I included these streamgages in the model.  However, nine streamgages 
had missing Hg Concentrations, two had technical errors in calculating Drainage Basins, and two 
had null values for LAI, thus leaving 40 streamgages for calibrating the regression model.    
 

 
Figure 2. Distribution of mean annual Hg concentration enumerated by drainage basin.  
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Table 1. List of response and predictor (i.e., independent) variables.  
M

od
el

 
Va

ri
ab

le
 

Model Variable Definition Data 
Range Units Data Source 

Re
sp

on
se

 

Mercury 
Concentration* 

Mean daily Hg concentration, as 
summarized from hourly 
measurements of 53 streamgages 
2011, over the 365 days.   

0.448 – 
19.151 µg/L  

USGS, 
Streamflow-
gaging stations 

Pr
ed

ic
to

r: 
st

re
am

ga
ge

  

Total Flow** 

Mean daily flow of water averaged for 
2011, over the 365 days.  The sum of 
all contributing streamflow sources 
(base flow, direct runoff, and 
discharge [Carter et al., 2005]) 

4,213-
3,760,489  Liters  

USGS, 
Streamflow-
gaging stations 

Pr
ed

ic
to

r: 
Ba

si
n-

le
ve

l 

Drainage Area** 

Entire drainage area of a watershed 
upstream of a USGS gaging station 
(calculated from digital elevation 
models of flow accumulation; 
calculated for each USGS gauge; these 
include overlapping in Drainage 
Basins.  

261 - 
6,330  Miles2 

USGS, 
ArcHYDRO 
model of basin 
delineations 

HUC_10* 
Areas of watershed that drains were 
linked to the USGS gauge site as a local 
measure of the drainage to the gauge.  

52.06 - 
389.14 Miles2 

USGS, 
Watershed 
Boundary 
Dataset (WBD) 

LAI(date)* 

Mean and Median of Leaf Area Index 
(LAI) estimated within the Drainage 
Area.  This is the 3D measure of 
biomass in a forest canopy.  Dates 
were measured from Julian date 129 
(May 9th) to 273 (Sept 30th)  

0 - 6 Unitless NASA, 2011 

Broad Land Cover 
Types*:  
AllForest  
AllWetland  
AllCrops  
AllDeveloped 

Percent land cover was calculated 
from 2006 National Land Cover 
Dataset (NLCD) estimated within the 
Drainage Area. 

0 - 100 
Percent 
Land 
Cover 

Fry et al., 2011 

Specific Land Cover 
Types*: 
PastureCrops 
CultivatedCrops 
EvergreenForest 
MixedForest 
DeciduousForest 
OpenWater 
EmergentWetland 
WoodyWetland 

0 - 100 
Percent 
Land 
Cover 

Fry et al., 2011 

Impervious Surface* 

Mean percent impervious surface 
estimated within the Drainage Area, 
extracted from the 2006 National 
Land Cover Dataset Impervious 
Surface product. 

0 - 100 

Percent 
Impervio
us 
Surface 

Fry et al., 2011 

     *Continuous (float) data type 
     **Continuous (integer) data type 
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2.2.2. Predictor Variables 
 
USGS Streamflow Gage Measurements 
At the USGS gauge scale, I only measured total flow and Hg concentration.  Total flow (L/yr) (Figure 
3) provided an estimate of the total volume of water flowing passed each gauge for the entire year.  
Hg concentration (ng/L) as the dependent variables in the regression models.  Previous attempts 
were made to predict Hg yield and Hg load, yet due to collinearity, these variables were dropped as 
response variables.  A standard method of estimating Hg Yield involves estimating the aerial input 
of Hg into the watershed (Carter et al., 2005) measured as micrograms per area (µg/mi2).  Total 
Load is estimated as the total mass (grams) of a contaminant feeding into a stream (Carter et al., 
2005).  Due to the variation of methods for estimating Yield and Load, the decision was made to 
only model Hg Concentration measured because Total Flow was highly correlated with both Hg 
Load and Hg Yield; thus these two variables were removed from further analyses.   
 

     
Figure 3. Distribution of mean annual streamflow enumerated by drainage basin. 
 
Hg concentration is more logical to model for this current study because the larger goal is to model 
future climate change with the USGS Precipitation Runoff Modeling System (PRMS) (Walker, J., pers. 
comm., 26 June 2012).  This PRMS may potentially use this study’s results to predict future Hg Load.  
Therefore, Hg Load is not necessary to accurately estimate Hg concentration in place of Hg load and 
Hg yield.  

 
Drainage Basins for Streamgages 
To estimate landscape variables at the scale of the Great Lakes Region, I used an enumeration unit 
(i.e., aggregation unit) of each gauges’ drainage basin (Figure 1).  This spatial unit was necessary to 
obtain landscape-scale statistics of the LAI and land cover for each USGS gauge.  The drainage area 
represented the area (mi2) containing all streams that flowed into each gauge.  These results were 
analyzed to ensure that the linear regression assumptions were not violated since some variables 
overlapped.  Because of the spatial aspect of this research, by including this overlap the variables 
could account for the spatial dependency the drainage basin and LAI.  Tobler's (1970) first law of 
geography stated that "Everything is related to everything else, but near things are more related 
than distant things.”  With any geographic phenomenon, I expect that nearby measurements will 
have values closer to those of their neighbors than values from farther away.   
 
The USGS National Hydrography Dataset (NHD) (USGS & EPA, 2012) provided the framework for 
delineating drainage basins for each USGS gauge.  This dataset was ideal for aggregating the LAI and 
land cover variables for their relationship to the georeferenced stream network of directionally-
attributed “flowlines.”  Additionally, these data referenced six “Watershed Boundary” levels, 
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offering the potential for multi-scale comparisons of landscape variables.  For example, I could 
measure LAI at the watershed level (i.e., HUC 10) and compare the effect of scale at the sub-basin 
level (i.e., HUC 8) (USGS & USDS NRCS, 2012).   
 
Each streamgage measured streamflow characteristics from the upstream streams.  These streams 
pass through landscapes with varied land cover types, soil, and urban development. To capture this 
upstream landscape information, I needed to quantity the area that drained into streamgages.  I 
would then use this Drainage Basin as the enumeration unit to summarize the percent land cover 
type, percent impervious surface (as a measure of urbanized area and potential for runoff), and LAI.   
 
My goal was to use stream networks to highlight upstream catchments that fed into each 
streamgage.  Catchments, the smallest landscape drainage area, were calculated using a flow-
accumulation method (Schäuble et al., 2008).  The slope of a digital elevation model gives the flow 
direction, from which stream fill and accumulation were estimated (Arnold, 2010).  Aggregating all 
the catchments along a stream to a particular streamgage results in the Drainage Basin.    
 
To calculate the Drainage Basin for streamgages, I first used a publically-available Basin Delineator 
tool (Horizons Systems Corporation, 2006).  However, due to technical errors with this tool running 
on an ArcGIS 9.3 platform, only 22 of the 44 streamgages were delineated.  To circumvent these 
errors, I used a manual basin delineation method for two reasons.  First, I sought to test the 
Drainage Basin results of this manual method with the results of the Basin Delineator tool.  Second, 
because the Basin Delineator tool was developed for an earlier and relatively out-of-date flowline 
dataset (e.g., 2006), I preferred to use more recent flowline and catchment data.  Flowlines are 
digitized vector streams, attributed with flow direction, enabling estimation of the upstream and 
downstream locations.  More specifically, with the July 2012 release of the NHDPlus version 2 
(Horizon Systems Corporation, 2012), I used these data to estimate upstream flow accumulation to 
aggregate catchments.  
 
For my manual drainage basin delineation method, I used the NHD, version 2, “high” resolution 
(1:24k) flowline data for the Great Lakes Region by Hydrologic Unit (HU) 4 through 15 subregions. 
These flowlines provided more detailed stream characteristics than the NHDPlus flowlines did in 
the “medium” resolution (1:100K) data.  Using the ArcGIS (ESRI, 2011), “Utility Network Analyst”, I 
manually delineated the networks using the “upstream flow accumulation” option.  The added 
benefit to using NHD alongside the NHDPlus was utilizing the catchment, which was calculated 
from the flowlines of the NHD.   
 
Results of the upstream accumulation along NHD flowlines highlighted NHDPlus catchment 
features.  I aggregated these catchments and linked them to each streamgage.  Of the 44 drainage 
basins, 42 were within 100 mi2 of the original drainage area used to estimate Hg concentration and 
total flow.  In comparing the original “Hydrologic Response Unit” (HRU) drainage area from PRMS 
models (Walker, J., pers. comm., 26 June 2012), I only used drainage basins that were within 100 
mi2 of HRU drainage areas.  As a result, I discarded two drainage basins I delineated from analysis 
that differed in area.   
 
Watershed Area for Streamgages 
As a smaller scale and independent measure of the hydrologic area, I used the Hydrologic Unit Code 
(HUC), level 12, for the subwatershed area around each streamgage.  The HUC boundaries are 
known as Watershed Boundary Datasets (WBD), for which the USGS delineates hydrologic 
boundaries of six levels.  Each level is designated by its HUC between two and 12 digits (Figure 4).  
Regions—the largest watershed level—have two digits to indicate one of 21 Regions across the US.  
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The smallest watershed level is the subwatershed designated with a 12-digit HUC.  The watershed 
level, HUC-10 was the unit of analysis for this study.  I used the HUC-10 area as a variable as a way 
to standardize the local variation.  The HUC-10 provided a readily-available measurement that 
could also be used for applying to unmeasured areas to measure Hg Concentration.  I used the area 
of these HUC-10 boundaries as an indicator of local watershed variation and linked these data to 
the streamgage (Figure5). 

 

 
Figure 4.  Graphical description of Hydrologic Units and respective Codes for each hydrologic level. 
 

 
Figure 5. Distribution of watershed (HUC-10) area. 
 
Biomass Estimation: Median of Drainage Basin 
I used the MODIS LAI data products as the estimate of biomass.  I downloaded all MODIS Download 
and extracted weekly LAI MODIS 250m resolution satellite images (grid locations  “v4h12” and 
“v4h11”) for general growing season dates  April to September 2011 (NASA, 2011).  Because of the 
small geographic scale (1:10,000,000)  of this study, higher resolution data was not necessary for 
estimating local and regional LAI estimates, and the 250-m spatial resolution of MODIS images was 
convenient and simple to process.  Additionally, as other satellite images often require hours of pre-
processing to correct atmospheric interference, this MODIS LAI data product downloads in a pre-
processed format with atmospheric correction.   
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MODIS data were developed through a collaboration of researchers and validated with ground-
measured LAI.  These LAI products have been validated in studies by numerous international 
research teams in over 20 locations across the world from France to the Kalahari Dessert in Africa 
(Yang et al. 2006).  Considering all six biomes worldwide that were sampled areas for the 
evaluation of LAI, estimates suggest that LAI potentially overestimates LAI by 12%.  However, for 
the evaluated site in Wisconsin, ground LAI estimates only differed from MODIS LAI estimates by 
seven percent (Ahl et al., 2006). The six maps in Figure 6 represent the raw LAI data (left maps) 
compared with the LAI summary statistics, aggregated by drainage basin. 

 

      
 

      
 

      
Figure 6. Distributions of MODIS Leaf Area Index (LAI) estimates for three dates: 5/25/11, 
6/10/11, and 9/30/11. Left images are continuous surfaces of LAI. Right images are LAI 
measurements summarized by median or mean value within the streamgage Drainage Basin. 
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Land Cover Estimation: Percent of Drainage Basin 
I estimated percent land cover within basins by converting all land cover in the 2006 National Land 
Cover Dataset (Fry et al., 2011) to binary variables.  For each land cover type (e.g., all forest type or 
emergent wetland), I reclassified all land cover types to either “1” for the land cover of interest, or 
“0” if not.  I then calculated the mean of these 1’s and 0’s and divided it by the basin area. This gave 
me the percent of land cover within the basin for USGS gauges (Figure 7).  
 

 
Figure 7. Distributions of percent landcover averaged by drainage basin for USGS streamgages.  
Distributions are displayed with Jenks classes to allow comparison across all maps. 
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Percent Impervious Surface: Mean Percent of Drainage Basin 
Impervious surface typically describes artificial structures such as concrete or rooftops.  This is a 
useful indicator of urbanized areas.  The Multi-Resolution Land Characteristics Consortium (MRLC) 
also provides a data product that estimate percent impervious surface.  I estimated the mean 
percent impervious surface within Drainage Basins for streamgages (Figure 8).   

 
Figure 8. Distribution of percent impervious surface averaged by drainage basin. Distributions are 
displayed with Jenks classes to allow comparison across all maps. 
 
 
2.3. Regression Analysis   
 
2.3.1. Model Calibration  
My goal was to use the 100 predictor variables and identify the best variables for predicting Hg 
concentration.  I fit the model using ordinary least squares estimation.  In comparing the results of 
the candidate regression models, I used two statistical programs to compare the output of the AICc 
selection process including Virtual Beach (Center for Exposure Assessment Models) and R (R 
Development Core Team). I used the resulting model to build an ordinary least squares regression 
(“OLS”) tool in ArcGIS (ESRI, 2011). I prepared the data in the same manner for input into all three 
software packages: Virtual Beach, R, and ArcGIS.  I ran the first analysis in Virtual Beach, a free 
statistical tool for multilinear regression models, developed by the Environmental Protection 
Agency for assessing beach water quality and pathogen exposure.  My second analysis involved 
using a stepwise automated AICc model selection algorithm to compare results with those of Virtual 
Beach.  I used the “glmulti” package in R, version 1.15. 
 
To follow the regression assumptions of normality, I transformed most variables (x) to increase the 
linear associations with the response variable, Hg concentration, using logarithmic (log10[x]), 
inverse (1/x), square, or square root (√𝑥).  I used these transformations to increase the linearity 
between all predictor variables.  These transformations also improved the model fit by normalizing 
residual errors.  Virtual Beach was used to automate the data-mining process of building multiple 
linear regression models for hundreds of thousands of candidate models.  The automated process 
runs analysis of all models and only selects models based on a user-specific model selection 
criterion (e.g., AICc or R2) and constraining models with less multicollinearity (e.g., using a low 
variance inflation factor (VIF)).  Another benefit of running this software was the options for 
iteratively assessing the prediction accuracy of each model using cross-validation and testing the 
mean square error of prediction (MSEP).   
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Model Selection  
To select the most parsimonious models, I used multiple log-linear regression, using the corrected 
Akaike Information Criterion (AICc) model selection to identify the best fit models.  The method 
assigns higher weights to more parsimonious models and thus penalizes models with a large 
number of predictors, which reduces model overfitting.   
 
AICc weights are the relative likelihood that a model is the best given the parameters of the model.  
This is based on.  Likelihood is the probability of the observed results given the model predictor 
variables.  AICc uses maximum likelihood estimation to maximize the likelihood function of the 
given model with a set of variables.  Relative likelihood of the given models is calculated using e (-0.5 * 

∆AIC model score).  Therefore, the Corrected Akaike weight for each model is the relative likelihood 
divided by the sum of all model maximum likelihood.   

 
To automate the model selection process in R, I used backward selection because it is considered 
more robust than forward selection and less susceptible to collinearity (Chatterjee & Hadi 2007, p 
290).  Backward selection allowed comparison of AICc weights between candidate (i.e., “nested”) 
models.  I only retained candidate models with variables that added significantly to predicting the 
response variable according the Wald test results of AICc weights between the full (i.e., included all 
variables) and reduced models (i.e., included only significant variables).   
 
In Virtual Beach, I set parameters to automate the process of selecting models using AICc criteria.  I 
only allowed five predictor variables be included in final models.  I set the maximum VIF at 3 to 
reduce multicollinearity in final models.  With the final ten models, I used the cross validation 
option to iteratively assess the prediction accuracy with the mean square error of prediction 
(MSEP).   
 
I only included the top five models with a change in AICc (ΔAICc).  I retained models with Δ AICc < 
2.0 where the ΔAICc is the difference between that model and the most parsimonious model as 
suggested by Burnham & Anderson (2006, p 70).  I present results as AICc weights as the likelihood 
of the model given the data.  My smaller sample size (n=40) warranted my use of second-order AICc 
selection equation shown below from Hurvich & Tsai (1989):  
 

        AIC = n ( ln (  𝑅𝑆𝑆 
𝑛

) + 2 K       
 
AICc = n ( ln (  𝑅𝑆𝑆 

𝑛
)) + 2 K (  𝐾+1

𝑛−𝐾−1
 )    

 
Where: 

   RSS = residual sum of squares of regression.  
   K = number of parameters (predictor variables) included in a model  
   n = sample size 
   𝒍𝒏 ( 𝑹𝑺𝑺 

𝒏
) = the natural log-likelihood of the model, given the data 

 
Evaluation of Model Fit and Regression Assumptions 
For model diagnostic tests, I assessed model fit by testing all assumption of linear regression.  I 
used a Neyman smooth global test of linear assumptions and performed specific directional tests 
designed to detect skewness, kurtosis, a nonlinear link function, and heteroscedasticity. I tested 
nonlinearity, looking at patterns in graphed and mapped residuals, the R2, variance inflation factor 



16 
 

(VIF) for mulitcollinearity, and confidence intervals of coefficients.  A final step in selecting the best 
models involved measuring the relative predictive accuracy of each model using the mean-squared 
error of prediction (MSEP).  The MSEP is measured as the Euclidean distance between the predicted 
Hg concentration and the expectation (i.e., observed) Hg concentration estimate.  Because this 
study’s goal is prediction, I wanted to find models that minimized this error between observed and 
expected Hg concentration (Brinda 2012).  I ranked all models by MSEP and listed the top five 
models.  
 
The VIF gives the indication of mulitcollinearity of predictor variables in a regression.  The VIF 
measures how much a predictor variable’s variance is increased by the presence of a linear 
association between two predictor variables.  Inflated variance leads to wide confidence intervals of 
the estimated coefficients and thus makes prediction difficult (Cyterske et al., 2012).  In a given 
equation with two collinear variables, a VIF value of ten or higher suggests multicollinearity and 
can cause estimation problems.   
 
I also tested if the residual between observed and predicted measurements were spatially 
autocorrelated.  I used a global test of spatial autocorrelation, Global Moran’s I, to assess the spatial 
associations of nearby measurements.  This measure is essentially the spatially-weighted 
equivalent of Pearson’s correlation coefficient (Waller & Gotway, 2004).   The spatial weight refers 
to a distance measure between measurements.  Neighboring points have weights closer to 1, 
whereas farther points take on a value of 0. In Moran’s I formula (Moran, 1950) below, the wij 
indicates the distance-weight between two observations i and j.  Thus, the I statistic is the sum of 
the weights between every pair of locations measured.   
 

𝐼 =  
𝑛
𝑆0

  
∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)𝑛

𝑗=1
𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

 
Where: 

 𝒘𝒊𝒋= residual sum of squares of regression.  
 I = number of parameters (predictor variables) included in a model  
 j = sample size 
 𝒙𝒊 = location i of variable x (measured here as a residual) 
 𝒙𝒋 = location j of variable x (measured here as a residual) 
 𝑺𝟎 = the sum of all weights for each pair (below) 
 

𝑆0 =  � � 𝑤𝑖𝑗
𝑛

𝑗=1

𝑛

𝑖=1
 

 
2.3.2. Prediction of Hg Concentration at Un-Measured Locations  
Nine streamgages (Figure 1 and Figure 2) lacked Hg concentration data and were therefore ideal 
candidates for testing each model’s predictive accuracy.  For these streamgages, I measured 
predictor variables to predict Hg concentration using all five best-fit models.  
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3.0 Results 
 
3.1. Significant Predictor Variables 
 
Variables that highlight correlated with Hg concentration (e.g., r > 0.4) tended to be included in 
regression models.  Only variables with r>=0.3 were included in the model selection stage.  These 
significant variables are listed in Table 2.  
 
Table 2. Pearson’s correlations between all predictor variables and response variable Log10(Hg 
concentration).  “Variable Transformation” gives the specific transformation used to increase 
linearity with the response variable. “Date” lists the calendar date for Leaf Area Index (LAI) Julian 
dates.  Under “Variable Names,” all predictor variables are listed that had significant correlations 
(r≥0.3) with the predictor variable.   

Variable 
Transformati

on 
Date (for LAI) Variable Name Pearson's Product 

Moment (r) p-value 

SQUARE   Area of Hydrologic 
Response Unit 0.2599 0.1053 

INVERSE   Area of Hydrologic Unit 
Code-10 0.5027 0.0009 

INVERSE 9-May LAI_129_MD 0.3767 0.0166 
INVERSE 9-May LAI_129_MN 0.3613 0.0220 

LOG10 17-May LAI_137_MD -0.4004 0.0105 
SQUARE 17-May LAI_137_MN -0.3640 0.0210 
INVERSE 25-May LAI_145_MD 0.3128 0.0494 
INVERSE 25-May LAI_145_MN 0.3273 0.0392 
INVERSE 2-Jun LAI_153_MD 0.3623 0.0216 
INVERSE 2-Jun LAI_153_MN 0.3565 0.0240 
INVERSE 10-Jun LAI_161_MD 0.3081 0.0531 
INVERSE 10-Jun LAI_161_MN 0.3255 0.0404 
INVERSE 26-Jun LAI_177_MD 0.3543 0.0249 
INVERSE 26-Jun LAI_177_MN 0.3445 0.0295 
INVERSE 4-Jul LAI_185_MD 0.3658 0.0203 
INVERSE 4-Jul LAI_185_MN 0.3553 0.0245 
INVERSE 12-Jul LAI_193_MD 0.3997 0.0106 
INVERSE 12-Jul LAI_193_MN 0.4027 0.0100 
INVERSE 28-Jul LAI_209_MN 0.3013 0.0589 
INVERSE 13-Aug LAI_225_MD 0.3443 0.0296 
INVERSE 13-Aug LAI_225_MN 0.3273 0.0392 

LOG10 30-Sep LAI_273_MD -0.4544 0.0032 
LOG10 30-Sep LAI_273_MN -0.5116 0.0007 

SQUARE   % Cultivated 0.2956 0.0641 
SQUARE   % Developed 0.3269 0.0395 
SQUARE 

ROOT   % Evergreen -0.3954 0.0116 

INVERSE   % All Forest Types 0.3444 0.0295 
SQUARE 

ROOT   % Mixed Forest Type 0.2757 0.0851 
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3.2. Model Calibration 
 
3.2.1. Model Selection  
I only report the model results from Virtual Beach because the top five models produced from the 
algorithm in R included variables with significantly high VIF values, while Virtual Beach 
automatically filtered such models out. For example, the fifth best model R output included the land 
cover variable of percent of all forest types. This variable, however, highly correlated with LAI 273 
(r= 0.729), which logically confirmed that LAI is another measure of forest cover, being the three-
dimensional measure of forest canopy.  The five best-fit models (Table 3) had the lowest MSEP, 
with the smallest squared difference between the observed and predicted value.  These models had 
R2 values between 0.446 to 0.487.  “Model 1” explained most of the variance.  For a full description 
of each model’s coefficients, see the Appendix. 
Table 3. Diagnostic tests of top five best-fit models, ranked by mean square error of prediction 
(MSEP).  Most parsimonious models had the lowest AICc weight. 

Model 
Number 

AICc 
Weight ∆AICc MSEP R2 Adjusted 

R2 Variables 

Model 1 -53.7851 0.0000 0.0908 0.4872 0.4445 INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-161-
median) 

Model 2 -53.2996 -0.4856 0.0927 0.4458 0.4159 INV(HUC-10-area) + log10(LAI-273-mean) 

Model 3 -51.722 -2.0632 0.0938 0.4601 0.4151 INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-145-
median) 

Model 4 -52.9103 -0.8749 0.0941 0.4759 0.4322 INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-161-
mean) 

Model 5 -51.9635 -1.8216 0.0943 0.4634 0.4186 INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-145-
mean) 

 
3.2.2. Evaluation of Model Fit and Regression Assumptions 
The top five models (Table 3) included several LAI terms.  As the top model (“Model 1”) included 
two LAI terms, I checked for possible interaction between these terms, since the presence of 
collinearity would inflate the model significance.  Although the interaction term had a significant 
linear association with log10(Hg Concentration) (r = -0.3516, p-value = 0.0261), the slope of the 
interaction term was not significant (t=1.34, p-value=0.189) (Table 4). 
 
Table 4. Results of model with interaction terms of LAI 273 (median) and LAI 161 (median). Model 
had a R2 = 0.4949 and adjusted R2 = 0.4371, and p-value <0.000. 

Parameter Coefficient Std. Error t-Statistic P-Value 

(Intercept) 2.0646 0.3130 6.597 <0.0000 

INV(HUC-10-area) 43.5120 10.7015 4.066 0.0003 

LAI-273-mean -0.7402 0.2538 -2.917 0.0006 

LAI-161-median -0.0827 0.0962 -0.860 0.3956 
Interaction: LAI-273-mean* LAI-161-
median 0.0909 0.0679 1.340 0.1888 

*“CI” is the confidence interval. “UTC” is the untransformed coefficient. “VIF” is the variance inflation factor. 

 
To further investigate the relationship between LAI 273 and LAI 161, I used a mean of the two LAI 
terms in another model.  I also transformed the mean LAI term to increase the linear association 
with the response variable (r=0.3642, p-value = 0.0209).  Yet, with a R2 = 0.3232 of the resulting 
model (Table 5), I did not consider these models an improvement on the current five-top models 
listed in Table 3.   
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Table 5. Results of model with an averaged LAI term of LAI 273 (median) and LAI 161 (median). 
Model had a R2 = 0.3232 and adjusted R2 = 0.2692, and p-value <0.0011. The mean LAI term was 
log-transformed to improve linear association with response variable log-transformed, Hg conc. 

Parameter Coefficient Std. Error t-Statistic P-Value 

(Intercept) 1.4268 0.1756 8.126 <0.000 

INV(HUC-10-area) 39.1111 12.0281 3.252 0.0025 
INV(LAI-273-mean+ LAI-161-
median]/2) -0.7644 0.4509 -1.695 0.0984 

 
As a final comparative test of models with these two LAI terms, I used an ANOVA to test whether 
the model with three variables (and potentially more collinearity) improved the model fit 
significantly relative to the model with only the 2 variables of HUC 10 and LAI 273 (mean).  There 
was some significant improvement (F = 2.91, p =0.0968) of including the additional LAI-161 
(median) term.   
 
Normality of Residuals (Spatial Autocorrelation) 
Moran’s I test of spatial autocorrelation revealed a low probability for all five models that residuals 
were spatially autocorrelated (Table 6).  Models 3 and 4 had p-values = 0.11, which may show some 
spatial autcorrelation.  
 
Table 6. Comparison of Moran’s I global test of spatial autocorrelation of regression residuals. 

Model 
Number 

Moran’s 
Index 

Expected 
Index Variance Z-score P-value Variables 

Model 1 
0.0265 -0.0256 0.0122 0.4713 0.6374 

INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-161-
median) 

Model 2 0.0898 -0.0256 0.0123 1.0420 0.2974 INV(HUC-10-area) + log10(LAI-273-mean) 

Model 3 
0.1498 -0.0256 0.0123 1.5832 0.1134 

INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-145-
median) 

Model 4 
0.1498 -0.0256 0.0123 1.5832 0.1134 

INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-161-
mean) 

Model 5 
0.0755 -0.0256 0.0123 0.9124 0.3616 

INV(HUC-10-area) + log10(LAI-273-mean) + INV(LAI-145-
mean) 

 
 
3.3. Prediction of Hg Concentration at Unmeasured Locations 
 
The predictions of Hg concentration are well above the observed measurements in the rest of the 
data Table 7. However, centering these estimates by subtracting the mean value for each model by 
the predicted values creates standardized and comparable prediction estimates.  
 
Table 7. Model predictions of Hg concentration for five best models including confidence intervals. 

Streamgage 
Model 1 Model 2 Model 3 Model 4 Model 5 

Pred Hg 
Conc. 95% CI Pred Hg 

Conc. 95%CI Pred Hg 
Conc. 95% CI Pred Hg 

Conc. 95% CI Pred Hg 
Conc. 95% CI 

Sturgeon  64.63 (5.8, 715.5) 16.95 (2.7, 107.4) 34.15 (3.3, 359.2) 54.47 (4.7, 634.9) 37.81 (3.5, 407.1) 

Manistique  75.03 (7.7, 733.2) 21.07 (3.7, 121.2) 43.81 (4.3, 445.9) 62.80 (6.2, 635.0) 49.47 (4.6, 527.1) 

Escanaba  56.05 (5.5, 573.72) 15.68 (2.6, 95.7) 28.05 (3.2, 247.5) 47.15 (4.4, 502.2) 31.82 (3.4, 298.4) 

Manistee  52.27 (5.9, 460.6) 16.11 (2.9, 88.8) 34.54 (3.4, 355.5) 43.56 (4.9, 390.3) 38.92 (3.6, 417.3) 

Indian  63.19 (7.0, 571.2) 19.08 (3.4, 106.5) 43.76 (3.8, 501.1) 53.65 (5.7, 502.9) 49.32 (4.2, 583.6) 

Cheboygan  57.32 (6.6, 500.0) 17.68 (3.3, 96.2) 38.37 (3.7, 398.0) 48.39 (5.4, 434.0) 43.24 (4.0, 466.7) 

Thunder Bay 51.00 (5.9, 443.9) 15.84 (2.9, 86.6) 33.25 (3.4, 330.3) 43.08 (4.8, 385.5) 36.82 (3.6, 373.2) 
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Maumee River 115.44 (14.3, 934.1) 55.98 (8.0, 394.3) 85.44 (10.0, 728.8) 97.17 (12.2, 775.8) 94.55 (10.7, 
838.0) 

Raquette 62.45 (6.4, 605.5) 18.90 (3.1, 116.2) 52.54 (3.2, 861.2) 54.50 (5.3, 561.7) 58.14 (3.6, 932.9) 

Mean 
Predicted Hg 

Concentration 
66.38  21.92  43.77  56.08  48.90  

 
These centered values now illustrate where potentially elevated Hg concentrations could be 
present in the watershed.  The highlighted row in Table 8 represent one streamgage in the Maumee 
River with elevated Hg concentration relative to the six other prediction streamagages.  
 
Table 8.  Mean-centered Hg Concentration predictions. The highlighted row represent locations 
that could potentially have elevated Hg concentration relative to the seven other streamgages. 

Streamgage 
(River) Model 1 Model 2 Model 3 Model 4 Model 5 

Sturgeon  1.75 4.97 9.62 1.61 11.09 
Manistique  8.65 0.85 0.04 6.71 0.57 
Escanaba  10.32 6.24 15.72 8.93 17.08 
Manistee  14.11 5.81 9.23 12.52 9.98 

Indian  3.19 2.85 0.01 2.44 0.42 
Cheboygan  9.05 4.24 5.40 7.69 5.66 

Thunder Bay 15.38 6.08 10.51 13.01 12.08 
Maumee River 49.07 34.06 41.67 41.08 45.65 

Raquette 3.93 3.02 -8.77 1.59 -9.25 
 
Final predictions (Figure 9) shows the distribution of predicted Hg concentration across the Great 
Lakes Region for the top five models.  A regional pattern is present from the southern drainage 
basin of Maumee River to the northern Sturgeon River drainage basin. 
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Figure 9. Displayed Hg concentration for five best models. Distributions are displayed with Jenks 
classes to allow comparison across all maps. 
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4.0. Discussion 
 
Before the modeling, a most interesting find of this study was the negative relationship between Hg 
concentration and LAI.  This negative relationship suggested a strong association between 
increased biomass and decreased Hg Concentration. This is peculiar because I originally expected a 
positive relationship based on the study by Risch et al. (2011) in forest watersheds that showed an 
increase in Hg dry deposition in areas with medium to high wet deposition.  However, as SØrensen, 
et al., (2009) showed, increased forest cover removal leads to favorable condition for Hg 
methylation in the organic soils; thus causing MeHg and Hg to accumulate more readily 
downstream.  For this paper, perhaps the negative relationship between biomass and Hg 
concentration reveals that the Great Lakes Region, on average, has high amounts of forest 
harvesting.  However, a more in-depth analysis of site-specific fluctuations in space and time in the 
forest cover removal and Hg concentrations downstream could uncover local levels of biomass and 
Hg concentration fluctuations.   

 
Making use of time series data for both biomass fluctuation and Hg concentrations could possibly 
highlight these more local variations.  Alternatively, a method similar to Seitz et al. (2012) 
addressing forest change could identify such spatial variation.  Seitz et al. (2012) assessed the 
influence of water quality and quantity from landscape changes including those for forest change.  
This basin-wide study analyzed landscape stressors and “river response” variables, revealing that 
forest change had strong associations with fluctuating sodium, total phosphorous, and total organic 
carbon.   

 
Related to landscape patterns, to assess local clusters local patterns (e.g., elevated Hg 
concentration), a different spatial test is necessary.  I used Moran’s I, global test of spatial 
autocorrelation to evaluate the regression residuals.  A local extension of this test known as the 
local indicators of spatial autocorrelation (LISAs), could evaluate spatial clustering of variables 
(Waller & Gotway, 2004).  This may be relevant if a future study considers time series analysis of 
the spatial pattern of biomass and Hg concentration. 

 
Additionally, a time series analysis using LAI terms could make use of the spatiotemporal variation 
of biomass as it relates to fluctuating Hg concentration.  The wide confidence intervals of the Hg 
concentration prediction for the five top regression models may have disguised mutlicollinearity 
between LAI variables.  Model 2, which only had the two variables of watershed area and mean LAI 
of Sept. 30 (Julian date 273), showed the least variance in prediction confidence intervals.  The 
lower variance of this model without the two LAI terms also supported my original assumption that 
high collineaity between LAI terms would affect the model prediction.   

 
Throughout the modeling process, I made the assumption that a smaller VIF was better to reduce 
the multicollinearity between predictor variables.  However, as Chatterjee & Hadi (2006) noted in 
their text on multiple regression, a VIF of under ten is considered valid without much 
mutlicollinearity.  Therefore, the five top models I reported in this study may have been improved 
by increasing the VIF value.  However, I ran brief analysis with a VIF =6.  This model selection 
process produced the same top two models.  For the rest of the models, though, additional LAI 
terms were listed as significant, including the LAI-193 (median), LAI-139 (mean), and LAI-129 
(median) models.  The R2 values for these models were very similar (e.g., R2 = 0.5208 that included 
three LAI terms (LAI-273(median) + LAI-161 (median) + LAI-193 (median) and HUC-10 watershed 
area).  Overall, because this short comparison still only added more LAI terms into the models, I felt 
confident about using the conservative VIF value (VIF = 3).  Moreover, despite this collinearity 
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between LAI terms, the trend for three of nine prediction sites showed elevated Hg concentration 
an all models for the Tontogany Maumee River streamgage (Figure 9).  However, given the range of 
prediction confidence  intervals (Table 7), these results should be interpreted cautiously.    

 
 
5.0. Conclusion 
 
The affects of mercury (Hg) continue to be a persistent threat to these ecosystems, recreational 
activities, and economies of the Great Lakes Region.  Sulfate-reducing bacteria transform Hg into 
methylmercury (MeHg), which can accumulate in larger piscivorous predators such as loons and 
fish.  Humans run the risk of consuming fish with high levels of MeHg, which may lead to mental 
confusion, seizures, or other neurological disorders.   
 
The distribution of Hg and the more damaging MeHg are the topic of recent research.  Previous 
studies on the distribution of Hg highlighted the spatial variation of wet and dry Hg deposition.  
Identifying sources of Hg is difficult because most of Hg deposition (both wet and dry) comes from 
the atmosphere, traveling sometimes up to hundreds of miles.  Relationships between Hg 
concentration and landscape attributes revealed that forest cover strongly influences nutrient 
fluctuation in receiving watersheds.  
 
My project looked at predicting Hg concentration using a landscape predictor of leaf area index 
(LAI) from remotely sensed satellite images.  I hypothesized that biomass, as an estimate of the 
three-dimensional canopy structure and density of forest cover would show a positive relationship 
with increase Hg in the receiving watershed based.  However, results showed an opposite 
relationship, highlighting the potential local spatiotemporal variation of both Hg concentration and 
biomass.  The final models produced highly varying predictions; yet, results did suggest a pattern of 
higher concentrations near urban areas.  The level of forest harvesting in these areas could 
potentially lead to soil runoff and increased Hg levels as well.  For a higher resolution study of Hg 
concentration, future analyses should incorporate time to detect the local variation in Hg 
concentration and LAI across the Great Lakes Region.  Overall, this study underscores how land use 
change (e.g., in harvested forests or urban areas) may influence runoff of numerous contaminants, 
including Hg, into nearby watersheds.  
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7.0 Appendix: Five best-fit models for predicting Hg concentration in the 
Great Lakes Region. 
 
A.1. Model 1 

Parameter Coefficient 95% 
CI* 

Std. 
Error 

t-
Statistic 

P-
Value 

Standardized 
Coefficient 

UT 
Coef* 

95% CI 
Interval 

(UT 
Coef) 

VIF 

(Intercept) 3.482 (2.161, 
4.802) 0.651 5.347 <0.000    

 

INV(HUC-10-area) 43.640 (22.094, 
65.187) 10.623 4.108 <0.000 0.507 0.023 (0.045, 

0.015) 1.071 
log10(LAI-273-
mean+1) -1.870 (-2.892, 

-0.847) 0.504 -3.71 0.001 -0.676 0.014 (0.001, 
0.142) 2.439 

INV(LAI-161-median) -0.312 (-0.682, 
0.059) 0.183 -1.705 0.097 -0.318 -3.208 ( -1.466, 

16.954) 2.331 
*“CI” is the confidence interval. “UTC” is the untransformed coefficient. “VIF” is the variance inflation factor. 

 
A.2. Model 2 

Parameter Coefficient 95% CI* Std. 
Error 

t-
Statistic P-Value 

Standardiz
ed 

Coefficient 

UT 
Coef* 

95% CI  
(UT 

Coef) 
VIF 

(Intercept) 2.600 (1.778, 
3.423) 0.406 6.404 <0.000    

 

INV(HUC-10-area) 39.353 (17.906, 
60.800) 10.585 3.718 <0.000 0.457 0.025 (0.001, 

0.029) 1.011 
log10(LAI-273-
mean+1) -1.222 (-1.912, -

0.532) 0.3404 -3.589 0.001 -0.442 0.01 (0.056, 
0.016) 1.011 

*“CI” is the confidence interval. “UTC” is the untransformed coefficient. “VIF” is the variance inflation factor. 

 
A.3. Model 3 

Parameter Coefficien
t 95% CI* Std. 

Error 
t-

Statistic P-Value 
Standardiz

ed 
Coefficient 

UT 
Coef* 

95% CI 
(UN 

Coef) 
VIF 

(Intercept) 3.277 (1.647, 
4.907) 0.804 4.078 <0.000    

 

INV(HUC-10-area) 39.023 (17.531, 
60.516) 10.597 3.682 0.001 0.454 0.026 (0.057, 

0.017) 1.012 
log10(LAI-273-
mean+1) -1.669 (-2.828, -

0.511) 0.571 -2.922 0.006 -0.603 0.214 (0.001, 
0.031) 2.842 

INV(LAI-145-
median) -0.258 (-0.795 , 

0.278) 0.265 -0.976 0.336 -0.201 -3.875 (-1.259, 
3.593) 2.824 

*“CI” is the confidence interval. “UTC” is the untransformed coefficient. “VIF” is the variance inflation factor. 

 
A.4. Model 4 

Parameter Coefficien
t 95% CI* Std. 

Error 
t-

Statistic P-Value 
Standardiz

ed 
Coefficient 

UT 
Coef* 

95% CI  
(UT 

Coef) 
VIF 

(Intercept) 3.387 (2.012 , 
4.761) 0.678 4.996 <0.000    

 

INV(HUC-10-area) 42.579 (20.930, 
64.227) 10.674 3.988 <0.000 0.495 0.024 (0.048, 

0.016) 1.057 
log10(LAI-273-
mean+1) -1.792 (-2.846, -

0.738) 0.520 -3.449 0.002 -0.648 0.002 (0.001, 
0.018) 2.42 

INV(LAI-161-mean) -3.226 (-7.777, 
1.325) 2.244 -1.438 0.159 -0.275 -0.310 (-0.129, 

0.755) 2.512 
*“CI” is the confidence interval. “UTC” is the untransformed coefficient. “VIF” is the variance inflation factor. 

 
 
A.5. Model 5 

Parameter Coefficient 95% CI* Std. 
Error 

t-
Statistic P-Value Standardiz

ed 
UT 

Coef* 
95% CI  

(UT VIF 
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Coefficient Coef) 

(Intercept) 3.359 (1.719, 
5.00) 0.809 4.153 <0.000    

 

INV(HUC-10-area) 39.628 ( 18.205, 
61.050) 10.56 3.752 0.001 0.461 0.025 (0.055, 

0.016) 1.011 
log10(LAI-273-
mean+1) -1.735 (-2.916, -

0.554) 0.582 -2.98 0.005 -0.627 0.002 (0.001, 
0.028) 2.972 

INV(LAI-145-
mean) -0.310 (-0.890, 

0.270) 0.2860 -1.084 0.285 -0.228 -3.225 (-1.124, 
3.706) 2.969 

*“CI” is the confidence interval. “UTC” is the untransformed coefficient. “VIF” is the variance inflation factor. 
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